Explicit Runge–Kutta methods for the preservation of invariants

نویسندگان

  • M. Calvo
  • D. Hernández-Abreu
چکیده

1 Introduction and basic definitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate preservation of quadratic invariants by explicit Runge–Kutta methods

The construction of new explicit Runge–Kutta methods taking into account, not only their accuracy, but also the preservation of Quadratic Invariants (QIs) is studied. An expression of the error of conservation of a QI by a Runge–Kutta method is given, and a new six–stage formula with classical order four and seventh order of QI–conservation is obtained by choosing their coefficients so that the...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Discretization and Weak Invariants

We consider the preservation of weak solution invariants in the time integration of ordinary diier-ential equations (ODEs). Recent research has concentrated on obtaining symplectic discretizations of Hamiltonian systems and schemes that preserve certain rst integrals (i.e. strong invariants). In this article, we examine the connection between constrained systems and ODEs with weak invariants fo...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

In this work, we propose Runge-Kutta time integration schemes for the incompressible Navier-Stokes equations with two salient properties. First, velocity and pressure computations are segregated at the time integration level, without the need to perform additional fractional step techniques that spoil high orders of accuracy. Second, the proposed methods keep the same order of accuracy for both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004